King Abdulaziz University Department of Mathematics 1st Semester 1439-1440 Faculty of Sciences ### **Math 444 Syllabus** # <u>Textbook: Elementary Number Theory with Applications, 2nd Edition</u> <u>Authors: Thomas Koshy</u> | | | Lectures | | |---------------------|------------------------------------|--|--------------------| | Chapter Title | Section Title | Subtitle | Examples | | Chapter 2 | 2.1 The Division Algorithm | Div and Mod Operators. The Divisibility Relation. Union, Intersection, and Complement. Even and Odd Integers. | 2.1, 2.2, 2.3, 2.4 | | <u>Divisibility</u> | 2.5 Prime and Composite
Numbers | Prime and Composite Numbers. Primes and Pi. The Sieve of Eratosthenes. A Number-Theoretic Function. | 2.22, 2.23, 2.24, | 2018/2019 أستاذة المادة/ د. هـتون شعيب | Chapter 3 | 3.1 Greatest Common
Divisor | Greatest Common Divisor. A Symbolic Definition of gcd. Relatively Prime Integers. Linear Combination. An Alternate Definition of gcd. A Linear Combination of n Positive Integers. Pairwise Relatively Prime Integers. | 3.1, 3.2, 3.3, 3.4 | |----------------------------------|--|--|--| | <u>Greatest</u> | 3.2 The Euclidean Algorithm | The Euclidean Algorithm. | 3.5, 3.6, 3.7 | | <u>Common</u>
<u>Divisors</u> | 3.3 The Fundamental
Theorem of Arithmetic | Canonical Decomposition.Factor Tree. | 3.9, 3.10, 3.11, 3.12 | | | 3.4 Least Common Multiple | Least Common Multiple.A Symbolic Definition of Icm. | 3.14, 3.15, 3.16 | | | 3.5 Linear Diophantine
Equations | Linear Diophantine Equations. | 3.17, 3.18 | | Chapter 4 | 4.1 Congruences | Congruence Modulo m. Congruence Classes. A Complete Set of Residues Modulo m. Modular Exponentiation. | 4.1, 4.2, 4.3, 4.4,
4.5, 4.6, 4.7, 4.8,
4.9, 4.10, 4.11,
4.16, 4.18 | | <u>Congruences</u> | 4.2 Linear Congruences | Modular Inverses. | 4.20, 4.21, 4.23,
4.24, 4.25 | 2018/2019 أستاذة المادة/ د. هـتون شعيب | Chapter 5 Congruence Applications | 5.1 Divisibility Tests | Divisibility Test for 10. Divisibility Test for 5. Divisibility Test for 2ⁱ. Divisibility Tests for 3 and 9. Divisibility Test for 11. | | |---|---------------------------------------|---|---------------------------------------| | Chapter 6 Systems of Linear Congruences | 6.1 The Chinese Remainder
Theorem | The Chinese Remainder Theorem. | 6.1, 6.2, 6.3 | | Chapter 7 | 7.1 Wilson's Theorem | Factorial, Multifactorial, and Primorial Primes. | 7.1, 7.2 | | <u>Three</u>
Classical | 7.2 Fermat's Little Theorem | An Alternate Proof of Wilson's Theorem. | 7.3, 7.4, 7.5, 7.7,
7.8, 7.9 | | Milestones | 7.4 Euler's Theorem | Euler's Phi Function. | 7.15, 7.16, 7.18,
7.19, 7.20, 7.21 | | | 8.1 Euler's Phi Function
Revisited | Multiplicative Function. | 8.1, 8.2, 8.5, 8.6 | | Chapter 8 | 8.2 The Tau and Sigma
Functions | The Tau Function,The Sigma Function. | 8.10, 8.11, 8.12,
8.13, 8.14 | | | 8.3 Perfect Numbers | Perfect Number. | | | <u>Multiplicative</u>
<u>Functions</u> | 8.4 Mersenne Primes | Mersenne Primes. A New Mersenne Conjecture. Number of Digits in Mp. Primality of Mersenne Numbers. | 8.16, 8.17, 8.18 | 2018/2019 أستاذة المادة/ د.هـتون شعيب | | 8.5 The Möbius Function | The Möbius Function μ. | 8.23, 8.24 | |--------------------------|--------------------------|--|--| | Chapter 11 | 11.1 Quadratic Residues | Quadratic Residue. | 11.1, 11.2, 11.3,
11.4 | | Quadratic
Congruences | 11.2 The Legendre Symbol | The Legendre Symbol.Gauss' Lemma. | 11.5, 11.6, 11.8,
11.9, 11.12, 11.13,
11.14, 11.15 | ## **Remarks:** - 1. Any student who misses 25% of the class will receive DN. - 2. Students should solve all assignments in Blackboard: [HW (1) HW (2) HW (3)]. - 3. If one of the students is absent from one of the exams due to an <u>acceptable excuse</u> by the instructor, and then the mark will be calculated as a percentage from the total of the other exams. - 4. The requirements to get an **IC** grade due to being absent from the final exam are: an attendance of at least 80% of the total lectures, attendance of the first and second exams and an acceptable excuse by the Educational Affairs. ### Marks distribution: | | HW (1) | HW (2) | HW (3) | Take Home Exam | Final Exam (Open Book) | Total | |-------------|-----------|-----------|----------|----------------|------------------------|-------| | Time; marks | 15 marks | 15 marks | 15 marks | 15 marks | 120 min; 40 marks | 100 | | Curriculum | Ch(2+3+4) | Ch(5+6+7) | Ch(8+11) | | ALL | | 2018/2019 أستاذة المادة/ د. هتون شعيب